Polarizable Twistor D-modules
نویسنده
چکیده
— We prove a Decomposition Theorem for the direct image of an irreducible local system on a smooth complex projective variety under a morphism with values in another smooth complex projective variety. For this purpose, we construct a category of polarized twistor D-modules and show a Decomposition Theorem in this category. Résumé (D-modules avec structure de twisteur polarisable). — Nous montrons un théorème de décomposition pour l’image directe d’un système local irréductible sur une variété projective complexe lisse par un morphisme à valeurs dans une autre variété projective complexe lisse. À cet effet, nous construisons une catégorie de Dmodules avec structure de twisteur polarisée et nous montrons un théorème de décomposition dans cette catégorie.
منابع مشابه
Wild Twistor D-modules
We propose a definition of (polarized) wild twistor D-modules, generalizing to objects with irregular singularities that of (polarized) regular twistor D-modules. We give a precise analysis in dimension one.
متن کاملWILD TWISTOR D-MODULES by
— We propose a definition of (polarized) wild twistor D-modules, generalizing to objects with irregular singularities that of (polarized) regular twistor D-modules. We give a precise analysis in dimension one. Résumé. — Nous proposons une définition de D-module sauvage avec structure de twisteur (polarisée), généralisant celle des D-modules réguliers avec structure de twisteur (polarisée). Nous...
متن کاملWild Harmonic Bundles and Wild Pure Twistor D-modules
We study (i) asymptotic behaviour of wild harmonic bundles, (ii) the relation between semisimple meromorphic flat connections and wild harmonic bundles, (iii) the relation between wild harmonic bundles and polarized wild pure twistor D-modules. As an application, we show the hard Lefschetz theorem for algebraic semisimple holonomic D-modules, conjectured by M. Kashiwara. We also study resolutio...
متن کاملFourier-laplace Transform of Irreducible Regular Differential Systems on the Riemann Sphere
We show that the Fourier-Laplace transform of an irreducible regular differential system on the Riemann sphere underlies, when one only considers the part at finite distance, a polarizable regular twistor D-module. The associated holomorphic bundle out of the origin is therefore equipped with a natural harmonic metric with a tame behaviour near the origin.
متن کاملFourier–laplace Transform of Irreducible Regular Differential Systems on the Riemann Sphere, Ii
This article is devoted to the complete proof of the main theorem in the author’s paper of 2004 showing that the Fourier–Laplace transform of an irreducible regular differential system on the Riemann sphere underlies, at finite distance, a polarizable regular twistor Dmodule. 2000 Math. Subj. Class. Primary: 32S40; Secondary: 14C30, 34Mxx.
متن کامل